Fourier transform-ion cyclotron resonance-mass spectrometer: Difference between revisions
From Mass Spec Terms
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{ | {{DefName|A mass spectrometer based on the principle of ion cyclotron resonance. An ion placed in a magnetic field will move in a circular orbit at a frequency characteristic of its m/z value. Ions are excited to a coherent orbit using a pulse of radio frequency energy and their image charge is detected on receiver plates as a time domain signal. Fourier transformation of the time domain signal results in the frequency domain FT-ICR signal which, on the basis of the inverse proportionality between frequency and m/z, can be converted to a mass spectrum.}} | ||
== [[Orange Book]] Entry == | == [[Orange Book]] Entry == |
Revision as of 14:34, 17 May 2005
DRAFT DEFINITION |
Fourier transform-ion cyclotron resonance-mass spectrometer |
---|
A mass spectrometer based on the principle of ion cyclotron resonance. An ion placed in a magnetic field will move in a circular orbit at a frequency characteristic of its m/z value. Ions are excited to a coherent orbit using a pulse of radio frequency energy and their image charge is detected on receiver plates as a time domain signal. Fourier transformation of the time domain signal results in the frequency domain FT-ICR signal which, on the basis of the inverse proportionality between frequency and m/z, can be converted to a mass spectrum. |
Considered between 2004 and 2006 but not included in the 2006 PAC submission |
This is an unofficial draft definition presented for information and comment. |
Orange Book Entry
A high-frequency mass spectrometer in which the cyclotron motion of ions, having different mass/charge ratios, in a constant magnetic field, is excited essentially simultaneously and coherently by a pulse of a radio-frequency electric field applied perpendicularly to the magnetic field. The excited cyclotron motion of the ions is subsequently detected on receiver plates as a time domain signal that contains all the cyclotron frequencies excited. Fourier transformation of the time domain signal results in the frequency domain FT-ICR signal which, on the basis of the inverse proportionality between frequency and mass/charge ratio, can be converted to a mass spectrum. See also ion cyclotron resonance (ICR) mass spectrometer.